
Task dependency graph in ocean model parallelisation

Piotr Piotrowski

Maritime Institute in Gdańsk

Brussels 2018

Piotr Piotrowski (MIG) Task dependency graph in parallelisation Brussels 2018 1 / 15



How to save e250 000

Is your model written in Fortran + MPI + OpenMP?
Do you want to couple your models?

Amdahl’s law: there is a limit to improvement by adding resources

Example: an ocean model with 98% parallelisable computations

0,00 50 000,00 100 000,00 150 000,00 200 000,00 250 000,00 300 000,00 350 000,00 400 000,00
0,00

10,00

20,00

30,00

40,00

50,00

60,00

49,48 48,16

Savings point

Hardware

Software+hardware

Costs [€]

S
pe

ed
up

Piotr Piotrowski (MIG) Task dependency graph in parallelisation Brussels 2018 2 / 15



How to improve software

Example:

an ocean model with 98% parallelisable computations

the most costly function, advection, constitutes 45% of computations

the model runs on 64 CPUs

Possible improvements:

double the number of processors

optimise advection twofold

optimise the unparallelisable 2% of computations twofold

Piotr Piotrowski (MIG) Task dependency graph in parallelisation Brussels 2018 3 / 15



Buy more processors

Before:

S = 1
(1−p)+ p

n
= 1

(1−0.98)+ 0.98
64

≈ 28.32

After doubling the number of processors:

S ′ = 1
(1−p)+ p

n
= 1

(1−0.98)+ 0.98
2·64

≈ 36.16

Maximum speedup:

Smax = limn→∞
1

(1−p)+ p
n

= 1
(1−0.98)+ 0.98

∞
= 50

S − speedup

p − parallelisable computations fraction

n − number of processors

Piotr Piotrowski (MIG) Task dependency graph in parallelisation Brussels 2018 4 / 15



Optimise the most computation intensive function

Before:

S = 1
(1−p)+ p

n
= 1

(1−0.98)+ 0.98
64

≈ 28.32

After optimising the advection function twofold:

S ′ = 1
(1−p)+ p

n
= 1

(1−0.98)+
0.98− 0.45

2
64

≈ 31.45

Maximum speedup (after buying more CPUs):

Smax = limn→∞
1

(1−p)+ p
n

= 1

(1−0.98)+
0.98− 0.45

2
∞

= 50

S − speedup

p − parallelisable computations fraction

n − number of processors

Piotr Piotrowski (MIG) Task dependency graph in parallelisation Brussels 2018 5 / 15



Optimise the unparallelisable part

Before:

S = 1
(1−p)+ p

n
= 1

(1−0.98)+ 0.98
64

≈ 28.32

After optimising the unparallelisable 2% of computations twofold:

S ′ = 1
(1−p)+ p

n
= 1

1−0.98
2

+ 0.98
64

≈ 39, 51

Maximum speedup (after buying more CPUs):

Smax = limn→∞
1

(1−p)+ p
n

= 1
1−0.98

2
+ 0.98
∞

= 100

S − speedup

p − parallelisable computations fraction

n − number of processors

Piotr Piotrowski (MIG) Task dependency graph in parallelisation Brussels 2018 6 / 15



The unparallelisable part

The unparallelisable part consists of:

halo region swaps

communication

workload imbalance

barriers

The more complex the models is, the more communication it requires and
the larger the unparallelisable part becomes.

Piotr Piotrowski (MIG) Task dependency graph in parallelisation Brussels 2018 7 / 15



“The Speedee Service System”

How to proceed?

The very same way the McDonald brothers when revolutionising fast food:
they redesigned the kitchen and focused on the workflow efficiency.

Redesign your software and focus on computations workflow efficiency.

Figure: An image from the movie “The Founder” (2016)

Piotr Piotrowski (MIG) Task dependency graph in parallelisation Brussels 2018 8 / 15



MPI

MPI was designed for distributed memory systems.
Good performance in distributed memory systems.
Inefficient use of shared memory systems.
Two copy operations during communication.

Shared memory node

Memory shared between processes

Message
sent

Message
received

Message
copy

Process #1
memory

Process #2
memory

Process #3
memory

Process #1 Process #2 Process #3

Figure: MPI communication

Shared memory node

Message
sent/received

Process memory

Process #1

Thread #1 Thread #2 Thread #3

Figure: Thread communication
(no MPI)

Piotr Piotrowski (MIG) Task dependency graph in parallelisation Brussels 2018 9 / 15



OpenMP

OpenMP was designed for shared memory systems.

Simple to use, but limited.

Designed for data parallelism.

Poor task based parallelism.

Essentially a sequential application with some work offloading.

Thread #1

Thread #2

Thread #3

Thread #4

Thread #5

Thread #6

Thread #7

Thread #8

advectiondiffusion

Piotr Piotrowski (MIG) Task dependency graph in parallelisation Brussels 2018 10 / 15



Distributed vs shared memory systems

Adapting old programs to fit new machines usually means adapting new
machines to behave like old ones.

Perlis, A. J. Special Feature: Epigrams on programming. SIGPLAN Not. 17, 9 (1982), 7–13.

Distributed memory Shared memory

halo regions yes no

communication by copying zero-copy

partitioning static dynamic

task management poor advanced

A shared memory system used like a distributed memory system,
is a more expensive distributed memory system with a slightly faster
network.

Piotr Piotrowski (MIG) Task dependency graph in parallelisation Brussels 2018 11 / 15



Task dependency graph

Shows the order of computations
Shows which computations can be done in parallel – several tasks can
execute simultaneously
A new task is started as soon as all prerequisites are computed
Reduces CPU idle time by improving the computations workflow
Improves CPU utilisation

η

w

vu

ρu' v'

un-1 vn-1 wn-1 ηn-1 ρn-1

pAK

Piotr Piotrowski (MIG) Task dependency graph in parallelisation Brussels 2018 12 / 15



Threads and queues

The main thread constructs the dependency graph for all time steps.

It inserts tasks into a dynamic priority queue.

The task parallelism thread pool selects a task as soon as its
prerequisites are done and executes the task.

Each task divides computations and dispatches small jobs (e.g.
computations of density for a single water line) to a FIFO queue.

The data parallelism thread pool executes jobs from the FIFO queue.

ρ

η

w

u

u'

v'

p

A

K

Data parallelism
thread pool

Task parallelism
thread pool

Main thread
K

A

K

A

K

A

K

A

w

⋮

Dynamic priority
task queue

FIFO job queue

⋮

Piotr Piotrowski (MIG) Task dependency graph in parallelisation Brussels 2018 13 / 15



Is this possible to implement?

Yes, it is possible to implement.

A proof of concept ocean model Pocean – a parallel 3D baroclinic
circulation ocean model:

Pocean

threads
(no OpenMP)

task
dependency

graph

dynamic
load

balancing

no halo
regions

optimised
computations

workflow

Java

data
parallelism

task
parallelism

zero-copy
communication

Piotr Piotrowski (MIG) Task dependency graph in parallelisation Brussels 2018 14 / 15



Pocean

Any questions?

Piotr Piotrowski (MIG) Task dependency graph in parallelisation Brussels 2018 15 / 15


