Baltic sea – Liepaja port – Liepaja lake model 2018-2019

Vilnis Frishfelds, Uldis Bethers, Juris Sennikovs, Andrejs Timuhins Faculty of Physics, Mathematics and Optometry, University of Latvia

Bathimetry at port

Nested HBM setup

1 nm resolution Baltic proper

Weather forcing: DMI HARMONIE

30 m resolution port and channels

60 m resolution lake

Observations

Automatic, hourly: water level, run-off, temperature

Manual, daily:

sea surface

salinity

temperature,

Automatic, hourly: water level, temperature

Automatic, hourly: water level, temperature. Occasionally: run-off

Flow rate through channel

Port-lake flow oscillations

Channel between port and lake

> Middle port gate. Observatio ns for the channel.

Port-lake seiches

Difference of water level

between port and lake

 $Period = 2 * \pi \sqrt{\frac{L_{ch} A_{lake}}{g A_{ch}}} \approx 10 h$

Otsmann, Suursaar, Kulla

Tidal oscillations in Liepaja

Observations from 1961

S1 (24 h) is sea breeze effect

Wind hodograms

Water level

Water level difference between channel and lake

Different sensors are used channel (15 min average) and lake (last hour)

Lake temperature sensor not working for this period

Interactive coastal visualisations

Currently testing in

http://www.modlab.lv/meteo/FimarWeb/LiepajaStraumes/Aprekins_2017/aprekins_2017_07_09.html but will be under http://www.water.lv

Surface currents and salinity in Liepaja port in September 15, 2017 after the storm

Conclusions

- Flows in port gates are largely influenced by currents in Baltic sea. Therefore, closed port model may not work.
- Longshore currents are important for coastal areas. Not accounted yet.
- Wetlands have to be accounted in case of high water level in large and shallow lake
- Better thermodynamics is required for shallow locations of the lake with strong seasonal vegetation.
- Both model and observations show that there are port-lake oscillations
- Both single level and two-level flows are characteristic in port gates and the channel connecting port with the lake