

Towards regional coupled climate modelling at BSH

Frank Janssen, Birte-Marie Ehlers, Janna Abalichin (BSH)

in cooperation with Jennifer Brauch (DWD) Joanna Staneva, Sebastian Grayek (HZG)

BOOS 2019

Project:

Introduction

- ProWaS: "Projection Service for Waterways and Shipping"
- Pilot study as part of the "German Strategy for Adaption to Climate Change" (DAS)
- participation of four German Federal Agencies
- establishment of an operational forecasting and projection service for climate, extreme weather and coastal and inland waterbodies

BSH tasks:

- selection and preparation of the ocean component for an operational coupled climate model
- carry out case studies and scenario runs
- prepare preliminary assessments concerning the impact of global climate change on German coastal regions

ProWaS model system

comparison of applied regional ocean models

regional ocean models

	NEMO Nordic v3.3	HIROMB- BOOS model (HBM)	NEMO GCOAST v3.6
nesting	no	yes	no
horizontal resolution	2 sm	3 sm / 0.5 sm	2 sm
# layer	56	36 / 25	51
vertical coordinates	z	z	σ
sea ice module	LIM3	model intern	LIM3
wetting and drying	no	yes	no
minimum water depth	10 m	-	8 m

regional ocean models

comparison of used model bathymetries

NEMO GCOAST bathymetry

comparison of forcings for regional ocean models

hindcast simulation

	NEMO Nordic v3.3	HIROMB-BOOS model (HBM)	NEMO GCOAST v3.6
atmospheric forcing	COSMO-REA6	COSMO-REA6	COSMO-REA6
river runoff	E-HYPE (corrected)	climatology	E-HYPE (corrected)
tides	OSU Tidal Inversion Software	based on observations	OSU Tidal Inversion Software
boundary conditions	monthly (T,S,SSH, U,V)	15 min (SSH,U,V) climatology (T,S)	daily (T,S,SSH, U,V)
model run	06/1996- 12/2015	06/1996-12/2015	06/1996-12/2015

BUNDESAMT FÜR UND

model validation and comparison

sea level validation

- proper reproduction of M2 tide •
- HBM shows higher correlations with observations • compared to NEMO Nordic v3.3 due to:
 - minimum water depth (10m) in NEMO Nordic • v3.3 (no wetting&drying scheme available)
 - differences in bathymetry and coastline ٠
 - different boundary conditions ٠

data

perfect fit

linear fit

mean x.v: -0.01. -0.00

0.35, 0.21

std x,y :

r · 0.85

a : 0.50

b : 0.00

JEMO

rms: 0.21

ev: 65.32

-1

Obs

model validation and comparison

sea surface temperature (SST)

Sea surface temperature in region: North Sea & Baltic Sea

model validation and comparison

sea ice extent 06/1996 - 12/2015

BAW local model

downstream module in model chain

- UnTRIM² model of German Bight and estuaries (Elbe, Weser, Ems)
- wind: COSMO-REA6
- sea level, temperature and salinity: model results from NEMO / HBM
- running at Federal Waterways Engineering and Research Institue (BAW)

comparison resolution regional and local model

	present	future	
	NEMO Nordic v3.3	HIROMB- BOOS Model	NEMO GCOAST v4.0
nesting	Ţ	E)	₽5
coastline resolution	Ţ	€}	S
wetting and drying	(J	€}	€?
minimum water depth	Ţ	₿.	€?
coupling	E)	(J	es.
data handling (boundary conditions)	€}	Ţ	€}
further model development	€}	(J	ES.

discussion on model choice

general discussion:

- model resolution for local effects
- which resolution is sufficient for which region?

model discussion:

- HBM delivers better results than NEMO Nordic v3.3 due to an advantageous setup for regional modelling
- model handling in NEMO is functional and model is under permanent active development

model choice:

improvement of NEMO GCOAST v3.6 setup through HBM (setup) advantages

> operational downscaling of IPCC (CMIP 5, 6, ...) scenarios for the German coast

delivery of tailored results for different groups of customers

- sea level rise
- changes in water temperature and salinity
- extreme events (e.g. storm surge)
- sea ice

steps of implementation

- study the impact of model resolution for different issues: which resolution is sufficient for which issue
- comparison of uncoupled ocean model results to coupled model setup
- comparison of regional ocean model with local model including estuaries
- refinement of boundary data, e.g. river inflow data

Questions?

BOOS 2019